

第二代 S8 TIGER

● 分析土壤中无机元素的含量 — 依据HJ 780-2015

介绍

土壤是动植物、微生物赖以生存的基础,是人类进行生产和生活所不可或缺的资源。土壤的成分决定了其用途,同时也影响生长其上的植物和生存其上的人类的生活。近年来频频曝出土壤污染事件,给人类造成的危害触目惊心。因此,对土壤成分进行全面的普查和严格的监控对于保障人民生活质量和顺利地进行工农业生产是必不可少也是迫在眉睫的任务。

土壤中所需监控的主次成分多达几十种,如果全部采用湿法化学方法(滴定法、分光光度计、AAS、ICP-OES等)很难满足动辄数以百、千计的样品检测任务。波长色散型X射线荧光光谱仪(WDXRF)凭借其快速、精准的分析性能,可以满足土壤中含量范围在ppm级别以上的成分的分析需求。

本报告展示了Bruker公司第二代S8 TIGER型X射线 荧光光谱仪在分析土壤样品方面所体现出的优异 性能。 Bruker公司的第二代S8 TIGER型X射线荧光光谱仪是目前世界上最先进的WDXRF(图1),其先进的设计、高质量的硬件和现代化的软件为土壤成分分析提供完美的解决方案:

- SampleCare™样品保护和原位测量专利技术可以确保测样安全性,有效保护系统关键组件
- 最高功率可达4.2kW的X射线光管可最大效能地 激发样品中的各元素
- 独有的HighSense™技术使得各元素都可获得非常可观的灵敏度,尤其是土壤中含量在ppm甚至亚ppm级别的痕量元素
- 创新设计的Spectraplus软件所独有的变动理论α 系数基体校正功能,可以进行宽含量范围分析

图1: 第二代S8 TIGER。

图2: 真空封挡。

样品制备

本报告采用压片方法制备样品。

压片制样操作简便、成本低,可保证痕量元素有足够的灵敏度。在控制好粒度的情况下压片法是土壤成分分析的理想制样方法(如图3)。

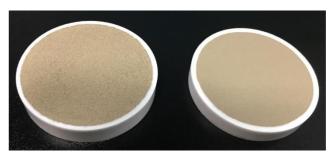


图3: 土壤压片。

测量与校准

本报告采用60个土壤及水系沉积物有证标准物质(CRMs)建立校准曲线,适用于HJ 780-2015标准要求的土壤和沉积物中25种无机元素和7种氧化物的测定,包括砷(As)、钡(Ba)、溴(Br)、铈(Ce)、氯(Cl)、钴(Co)、铬(Cr)、铜(Cu)、镓(Ga)、铪(Hf)、镧(La)、锰(Mn)、镍(Ni)、磷(P)、 铅(Pb)、铷(Rb)、硫(S)、钪(Sc)、锶(Sr)、钍(Th)、钛(Ti)、钒(V)、钇(Y)、锌(Zn)、锆(Zr)、二氧化硅(SiO₂)、三氧化二铝(Al₂O₃)、三氧化二铁(Fe₂O₃)、氧化钾(K_2O)、氧化钠(Na_2O)、氧化钙(CaO)、氧化镁(MgO);同时,为了增强应用方法的拓展性,除了标准中所要求的成分,还测量了铌(Nb)、钼(Mo)、镉(Cd)、锡(Sn)、锑(Sb)、钨(W)、铋(Bi)、钕(Nd)、铀(U),共41种成分(见图4)。各成分的含量范围见表1。

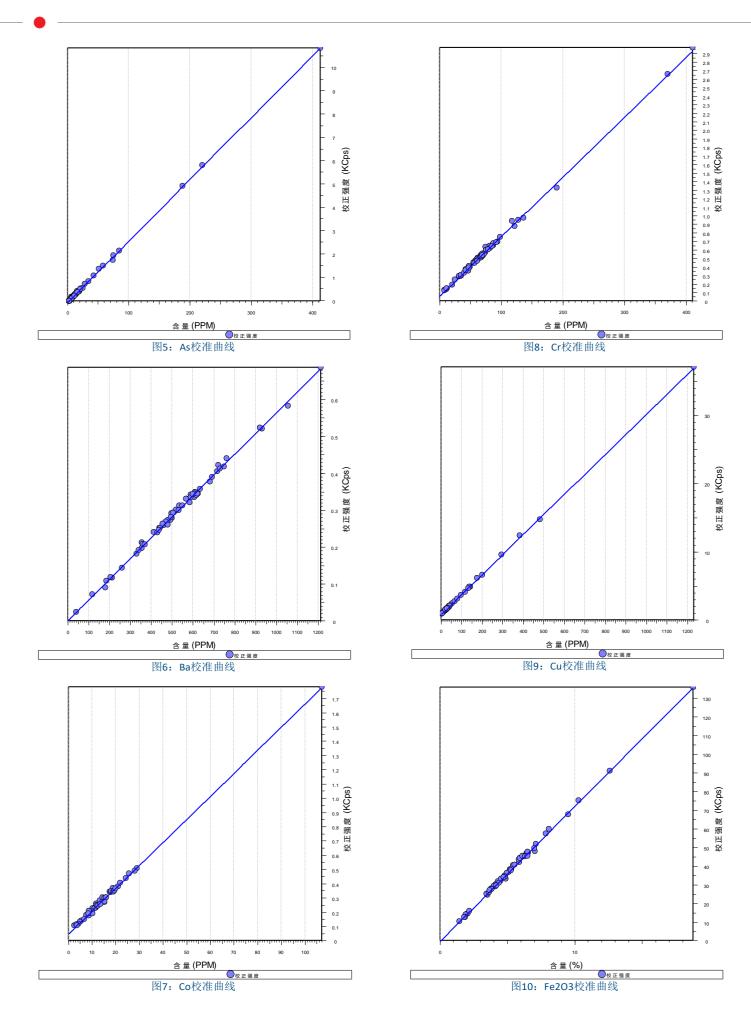
为了达到最佳的测量效果,针对不同元素优化设定了不同的分析条件,见表**2**。

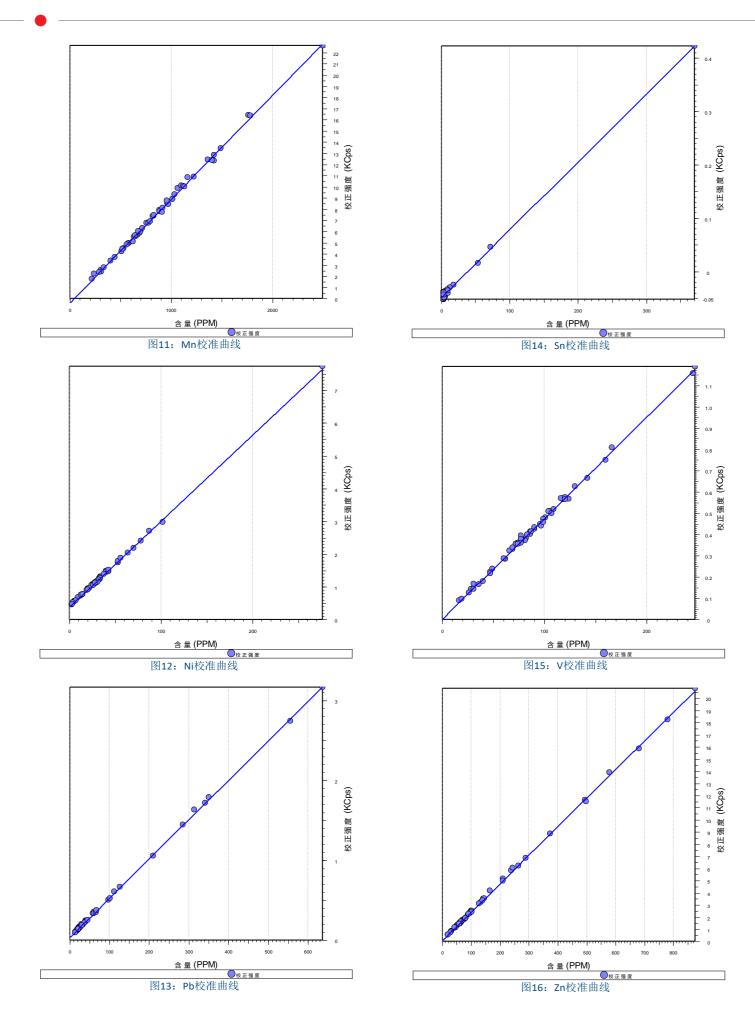
H																	He
Li	Ве											В	С	N	0	F	Ne
Na	Mg											Αl	Si	Р	S	CI	Ar
						Mn											
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
Cs	Ва	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Fr	Ra	Ac															
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
				Th	Pa	U	Np	Pu	Am								

图4: 测量元素

表1: 有证标准物质(CRMs)含量范围

成分	含量 [mg/kg]	成分	含量 [mg/kg]
As	2 - 412	Ва	42 - 1210
Br	0.5 - 26	Ce	24 - 402
Cl	29 - 40000	Co	2.6 - 97
Cr	7.6 - 410	Cu	3.9 - 1230
Ga	6.4 - 77.2	Hf	1.8 - 20
La	11.8 - 164	Mn	218 - 2490
Ni	2.7 - 276	Р	140 - 1520
Pb	13.4 - 636	Rb	9.2 - 470
S	50 - 27000	Sc	2.1 - 28
Sr	24 - 486	Th	4.1 - 70
Ti	1270 - 20200	V	16.5 - 247
Υ	7 - 67	Zn	18 - 874
Zr	70 - 524	SiO ₂	*32.69 - 88.89
Al_2O_3	*2.84 - 29.26	Fe_2O_3	*1.46 - 18.76
K ₂ O	*0.13 - 5.2	Na ₂ O	*0.04 - 8.99
CaO	*0.08 - 13.12	MgO	*0.12 - 4.66
Nb	5.1 - 95	Мо	0.3 - 92
Cd	0.1 - 32	Sn	1 - 370
Sb	0.2 - 60	W	0.5 - 126
Bi	0.1 - 50	Nd	8.9 - 210
U	0.8 - 17		


注: 带*的为百分含量(%)


表2: 分析条件

元素	电压 [kV]	电流 [mA]	滤光片	准直器[°]	晶体	探测器
Si	30	35	none	0.23	PET	FC
Al	30	90	none	0.23	PET	FC
CI	30	120	none	0.23	PET	FC
Mg	30	120	none	0.23	XS-55	FC
Na	30	120	none	0.46	XS-55	FC
P, S	30	120	none	0.46	PET	FC
Ca	50	40	none	0.46	LiF200	FC
Ba, Sc, Ti, V	50	72	none	0.23	LiF200	FC
Ce, K, La	50	72	none	0.46	LiF200	FC
Fe	60	5	none	0.23	LiF200	SC
As, Bi, Br, Co, Cr, Ga, Hf, Mn, Mo, Nb, Pb, Rb, Sr, Th, U, W, Y, Zn, Zr	60	60	none	0.23	LiF200	SC
Cd, Sb, Sn	60	60	Cu (200 μm)	0.23	LiF200	SC
Cu, Nd, Ni	60	60	none	0.46	LiF200	SC

校准曲线

部分元素校准曲线见图5-图16。

准确性与精密度

对不同土壤样品(有证标准物质)进行重复性测试,可以看到精密度均优于标准HJ 780-2015的要求。见表3-5。

表3: GSS-07 (CRM) 稳定性和精密度测试

GSS-07	As	Со	Cr	Cu	Mn	 Ni	Pb	V	Zn
	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	 [mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]
Rep-1	5.1	104.3	423.8	100.8	1914.9	 285.2	14.9	256.5	154.8
Rep-2	4.9	104.4	421.1	102.0	1909.8	 286.1	14.9	257.6	153
Rep-3	4.5	102.8	422.7	102.5	1916.5	 285.9	14.8	252.5	154.2
Rep-4-11						 			
Rep-12	5.1	102.3	418.3	100.6	1889.5	 282.5	14.3	256.7	152.6
平均值	5.0	102.6	420.2	100.9	1903.0	 284.4	14.4	254.3	153.3
标准偏差	0.2	1.2	2.1	1.1	8.5	 1.2	0.6	2.3	0.7
相对标准偏差(%)	4.66	1.14	0.49	1.04	0.45	 0.43	4.01	0.91	0.45
标称值	4.8	97	410	97	1780	 276	14	245	142
误差	0.2	5.6	10.2	3.9	123	 8.4	0.4	9.3	11.3
△lgC - 实测	0.018	0.024	0.011	0.017	0.029	 0.013	0.012	0.016	0.033
∆lgC - HJ 780-2015	≤0.12	≤0.10	≤0.10	≤0.10	≤0.10	 ≤0.10	≤0.10	≤0.10	≤0.10

表4: GSS-17 (CRM) 稳定性和精密度测试

GSS-17	As [mg/kg]	Co [mg/kg]	Cr [mg/kg]	Cu [mg/kg]	Mn [mg/kg]	 Ni [mg/kg]	Pb [mg/kg]	V [mg/kg]	Zn [mg/kg]
Rep-1	5.9	4.4	26.7	11.8	302.1	 10.6	17.5	39.2	28.4
Rep-2	6.0	4.8	25.5	11.3	303.1	 10.4	16.8	37.3	28.1
Rep-3	6.1	4.4	26.0	11.5	301.8	 10.3	16.9	38.9	28.2
Rep-4-11						 			
Rep-12	5.8	5.5	26.2	10.9	303.0	 10.1	17.3	40.1	28.2
平均值	6.0	4.9	26.1	11.4	303.1	 10.4	16.6	39.2	28.3
标准偏差	0.3	0.3	0.4	0.3	0.9	 0.1	0.7	1.0	0.3
相对标准偏差(%)	4.78	6.95	1.43	2.49	0.30	 1.35	4.01	2.58	1.00
标称值	6.2	5.0	25	12.6	309	 9.6	17.4	40	29
误差	0.2	0.1	1.1	1.2	5.9	 0.8	0.8	0.8	0.7
∆ lgC - 实测	0.014	0.009	0.019	0.043	0.008	 0.035	0.020	0.009	0.011
∆lgC - HJ 780-2015	≤0.10	≤0.10	≤0.10	≤0.10	≤0.10	 ≤0.10	≤0.10	≤0.10	≤0.10

表5: GSS-33 (CRM) 稳定性和精密度测试

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	111/ 100/01/2011	13 111 150 113 114							
GSS-33	As [mg/kg]	Co [mg/kg]	Cr [mg/kg]	Cu [mg/kg]	Mn [mg/kg]	 Ni [mg/kg]	Pb [mg/kg]	V [mg/kg]	Zn [mg/kg]
Rep-1	13.5	14.1	66.8	24.4	652.7	 31.9	22.4	85.9	67.6
Rep-2	13.7	14.0	66.7	23.8	654.8	 32.0	21.7	84.1	68.5
Rep-3	12.8	13.0	65.5	23.9	648.1	 31.6	23.1	84.5	67.8
Rep-4-11	•••			•••	•••	 •••			
Rep-12	13.3	13.2	67.9	23.2	646.6	 31.8	21.8	82.8	66.6
平均值	13.6	13.1	66.5	24.0	648.3	 31.6	21.6	82.8	67.4
标准偏差	0.3	0.6	0.7	0.4	3.0	 0.3	0.6	1.8	0.5
相对标准偏差(%)	2.24	4.67	1.01	1.80	0.47	 1.07	2.85	2.12	0.79
标称值	13.7	13.0	68	25	664	 32	22	83	69
误差	0.1	0.1	1.5	1	15.7	 0.4	0.4	0.2	1.6
∆ lgC - 实测	0.003	0.003	0.010	0.018	0.010	 0.005	0.008	0.001	0.010
∆lgC - HJ 780-2015	≤0.10	≤0.10	≤0.10	≤0.10	≤0.10	 ≤0.10	≤0.10	≤0.10	≤0.10

表6: 各成分检出限

	LLD [m	ng/kg]	N.4-1	LLD [I	LLD [mg/kg]			
成分	本方法	标准	成分	本方法	标准			
As	0.6	2.0	Ва	9.7	11.7			
Br	0.4	1.0	Ce	10.5	24.1			
Cl	3.7	20	Co	0.9	1.6			
Cr	1.7	3.0	Cu	0.8	1.2			
Ga	0.9	2.0	Hf	0.4	1.7			
La	6.7	10.6	Mn	3.6	10.0			
Ni	0.9	1.5	Р	2.8	10.0			
Pb	1.4	2.0	Rb	0.6	2.0			
S	1.5	30.0	Sc	2.1	2.4			
Sr	0.7	2.0	Th	1.4	2.1			
Ti	5.5	50.0	V	2.4	4.0			
Υ	0.5	1.0	Zn	0.7	2.0			
Zr	0.6	2.0	SiO_2	638.7	2700.0			
Al_2O_3	110.0	700.0	Fe ₂ O ₃	15.5	500.0			
K_2O	11.1	500.0	Na ₂ O	13.6	500.0			
CaO	11.6	900.0	MgO	18.0	500.0			
Nb	0.5	-	Мо	3.3	-			
Cd	0.7	-	Sn	2.5	-			
Sb	2.4	-	W	2.1	-			
Bi	1.5	-	Nd	10.4	=			
U	0.5	-						

结论

本报告展现了第二代S8 TIGER在分析土壤样品时所表现出的优异性能。仪器完全满足土壤分析标准HJ 780-2015的要求。与滴定法、AAS和ICP-OES等传统湿法化学方法相比,XRF制样简便、分析快速稳定,S8 TIGER可为您的实验室带来诸多益处,如高效、稳定应对大量样品,维护及运行成本低等。

第二代S8 TIGER 能够精准、高效地分析土壤样品中的含量在亚ppm级别以上的无机元素和氧化物,是土壤普查、污染筛查及监控等土壤分析工作的最佳选择,是环境部门及第三方实验室应对土壤分析工作的得力助手和最优解决方案。